
Biochimica et Biophysica Acta 1822 (2012) 625–630

Contents lists available at SciVerse ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbad is
Review

Elevation of glutathione as a therapeutic strategy in Alzheimer disease☆

Chava B. Pocernich a,b, D. Allan Butterfield a,b,c,⁎
a Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
b Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA
c Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
☆ This article is part of a Special Issue entitled: Antiox
ment in Disease.
⁎ Corresponding author at: Department of Chemi

Lexington, KY 40506, USA. Tel.: +1 859 257 3184; fa
E-mail address: dabcns@uky.edu (D.A. Butterfield).

0925-4439/$ – see front matter © 2011 Elsevier B.V. All
doi:10.1016/j.bbadis.2011.10.003
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 August 2011
Received in revised form 28 September 2011
Accepted 6 October 2011
Available online 12 October 2011

Keywords:
Alzheimer disease (AD)
Mild cognitive impairment (MCI)
Amyloid β-peptide
Glutathione (GSH)
N-acetylcysteine (NAC)
γ-Glutamylcysteine ethyl ester
Oxidative stress has been associated with the onset and progression of mild cognitive impairment (MCI) and
Alzheimer disease (AD). AD and MCI brain and plasma display extensive oxidative stress as indexed by pro-
tein oxidation, lipid peroxidation, free radical formation, DNA oxidation, and decreased antioxidants. The
most abundant endogenous antioxidant, glutathione, plays a significant role in combating oxidative stress.
The ratio of oxidized to reduced glutathione is utilized as a measure of intensity of oxidative stress. Antioxi-
dants have long been considered as an approach to slow down AD progression. In this review, we focus on the
elevation on glutathione through N-acetyl-cysteine (NAC) and γ-glutamylcysteine ethyl ester (GCEE) as a
potential therapeutic approach for Alzheimer disease. This article is part of a Special Issue entitled: Antioxi-
dants and Antioxidant Treatment in Disease.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer disease (AD) is a largely sporadic, age-related neurode-
generative disorder pathologically characterized by the accumulation
of abnormal protein deposits, including extracellular amyloid pla-
ques, intracellular neurofibrillary tangles (NFT), and loss of synaptic
connections within selective brain regions [1]. One of the main com-
ponents of amyloid plaques is the amyloid β-peptide (Aβ), generated
by the proteolytic cleavage of the amyloid precursor protein (APP) by
β- and γ-secretases. Aβ exists in many forms, such as soluble, aggre-
gated, oligomeric, protofibrillar, and fibrillar forms [2,3], and a number
of studies have demonstrate that the oligomeric form of Aβ is highly
toxic and associated with oxidative stress [4–6].

Aβ(1–42)-associated free radicals can abstract an allylic hydrogen-
atom from the unsaturated acyl chains of lipid molecules within the
lipid bilayer, thereby leading to the initiation of lipid peroxidation pro-
cesses [7,8]. The process of lipid peroxidation generates highly reactive
products, such as 4-hydroxy-2-nonenal (HNE) and acrolein, that can
further react with proteins and enzymes, effectively amplifying the
effects of Aβ(1–42)-induced free radical processes [8,9].

Under normal conditions, oxidative stress and damage are combat-
ed by endogenous antioxidant compounds and enzymes within the
cell. However, the brain is particularly vulnerable to oxidative damage
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due to the high levels of unsaturated lipids, oxygen, redox metal ions,
and relatively poor antioxidant systems. As previously reported by our
laboratory and others, both AD and mild cognitive impairment (MCI)
brains have significantly decreased levels of antioxidant enzymes,
making the brain more vulnerable to Aβ(1–42)-induced toxic effects
[10]. Oxidative stress is also evident in AD brain bymarked levels of pro-
tein, lipid, DNA, and RNA oxidation, neuronal dysfunction and death
[11,12]. Consequently, one way of boosting defenses in the brain is by
assisting the antioxidant defense system particularly endogenous gluta-
thione (GSH) and glutathione-related enzymes.
2. Glutathione (GSH)

The most prevalent antioxidant in the brain, glutathione, is found
in millimolar concentrations in most cells. A thiol-containing mole-
cule, GSH is capable of reacting with reactive oxygen species (ROS)
and nucleophilic compounds such as HNE and acrolein, lipid peroxi-
dation products that react with thiols in proteins. Reduced GSH reacts
with free radicals to form oxidized glutathione (GSSG), which can be
catalyzed by the enzyme glutathione peroxidase (GPx) or occur inde-
pendently. GSSG is recycled back to two GSH molecules by GSH re-
ductase (GR) utilizing the reducing equivalents of NADPH (Fig. 1).
Glutathione S-transferases (GST) are a group of enzymes that catalyze
the reaction between GSH and nucleophilic compounds such as HNE
and acrolein. The resulting glutathione-S-conjugates are effluxed
from the cell by the multidrug resistance protein-1 (MRP-1) [13,14].
In AD hippocampus, GST and MRP-1 are covalently bound by the
lipid peroxidation product HNE, rendering them inactive [13,15].
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Fig. 1. Recycling of glutathione (GSH) and oxidized glutathione (GSSG).
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Thus, glutathione-S-conjugates are not readily formed or exported,
possibly increasing HNE levels in the cell [16].

Post-translational modification of proteins by glutathionylation is re-
versible by glutaredoxin, a thiol transferase [17]. Redox sensitive pro-
teins could be protected from oxidative stress by glutathionylation.
Indeed, several proteins in AD inferior parietal lobule (IPL), including
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), α-enolase, and
p53, were identified as glutathionylated [18,19]. GAPDH and α-enolase
also have decreased activity in AD brain, and were previously reported
to be oxidatively modified [20–22]. GAPDH and α-enolase are enzymes
in the energy producing glycolytic pathway; oxidative modification
anddecreased activitymay contribute to the alteration in glucosemetab-
olism noted in AD [23]. Moreover, both enzymes have pro-survival func-
tions in addition to roles in glycolysis. Oxidative dysfunction of these
enzymes is deleterious to neurons [24,25].

GSH levels are decreased in diseases with oxidative stress – in-
cluding AD – and with age [26]. In AD peripheral lymphocytes, GSH
levels are decreased and GSSG levels are increased, consistent with
increased oxidative stress [27]. The ratio of GSSG to GSH is used as a
marker of redox thiol status and oxidative stress. Indeed, with in-
creasing progression of AD, GSSG and GSSG/GSH levels are found to
increase. Lloret and colleagues found a linear correlation between in-
creased GSSG levels and decreased cognitive status of AD patients
using the Mini Mental Status examination (MMSE) [28].

Mild cognitive impairment (MCI) is often referred to as a transi-
tional period between normal cognitive aging and mild dementia or
probable AD. Many individuals with amnestic MCI develop AD, sug-
gesting MCI is the earliest stage of AD [29,30]. Several studies have
demonstrated oxidative stress in MCI brain. In MCI hippocampus, a
brain region highly affected in AD, superoxide dismutase (SOD) and
GST activity is decreased, although protein expression was increased.
The ratio of GSH/GSSG was decreased consistent with oxidative stress
conditions. No significant difference in GPx or GR enzyme activity was
noted [31]. Many enzymes are redox sensitive and easily oxidized,
rendering them inactive even though protein expression level is
high. Lipid and protein oxidative stress products were also elevated
in the superior and middle temporal gyri of MCI brain [9,32,33]. Re-
cent reports demonstrated peripheral serum levels of MCI and AD pa-
tients had significantly decreased GPx and SOD activity compared to
age-matched controls, but did not differ from each other [34]. These
researchers also showed increased levels of lipid peroxidation prod-
uct malondialdehyde (MDA) compared to controls, with a significant
increase fromMCI to AD. Several previous studies also reported an in-
crease in peripheral lipid and protein oxidation in AD and MCI pa-
tients [35–38]. Decreased SOD and GPx antioxidant activity over
time, leads to an accumulation of H2O2 and lipid peroxidation, possi-
bly leading to the pathological alterations characteristic of AD. The
above studies all concluded that oxidative stress conditions in early
AD are already present in MCI, and the decreased antioxidant activity,
particularly glutathione, may initiate the progression to AD [37]. A re-
cent study demonstrated that MCI patients that progressed to AD dis-
played an increased distribution of the ApoE ε4 allele, a risk factor for
sporadic AD, and displayed a significant decrease in the ratio of oxi-
dized to reduced glutathione and vitamin E levels compared to MCI
patients that remained at MCI status over time [39]. Oxidative stress
indices increased over time in both MCI and MCI patients that pro-
gressed to AD, with no difference between the two groups. This
study confirms that a decrease of antioxidants, particularly reduced
glutathione, over time is a major contributor to the progression of
MCI to AD. Increased peripheral oxidative stress indices, such as
MDA, TBARS, or protein carbonyls, could potentially be used as a bio-
marker for diagnosing the onset of MCI, while a steady decrease of re-
duced glutathione may be a biomarker for progression to AD. An early
diagnosis would allow early intervention utilizing appropriate antiox-
idants and other therapies.

Glutathione is comprised of the amino acids glutamate, cysteine, and
glycine. Glutamate and glycine are found in millimolar concentrations,
whereas free cysteine is limited with most non-protein cysteine being
stored within GSH. Two enzymes are involved in synthesis of GSH:
γ-glutamylcysteine ligase (also called γ-glutamylcysteine synthetase)
and gluthathione synthase (Fig. 2). Because the physiological amount
of brain-resident cysteine limits the formation of GSH, most current re-
search has focused on increasing cysteine levels in the brain as an indi-
rect way to increase the levels of GSH. In particular, N-acetyl-L-cysteine
(NAC) is known to directly increase brain cysteine levels, allowing for
increased biosynthesis of GSH in the brain and periphery [40]. Addition-
ally,γ-Glutamylcysteine ethyl ester (GCEE) introduces the precursor for
the last step in GSH synthesis, guiding cysteine directly towards GSH
synthesis in the brain and periphery and avoiding the feedback inhibi-
tion of γ-glutaminecysteine ligase.

3. N-acetyl-L-cysteine (NAC)

NAC (Fig. 3) has been shown to be an effective precursor toGSHpro-
duction and crosses the blood brain barrier (BBB) [41,42]. NAC provides
cysteine, the rate limiting substrate in glutathione synthesis. NAC acts as
an antioxidant by increasing GSH levels and by directly interactingwith
free radicals. Intraperitoneal (i.p.) injection of NAC to rodents increased
GSH in brain and synaptosomes and offered protection against peroxy-
nitrite, hydroxyl radicals, acrolein, and oxidative stress induced by 3-
nitro-propionic acid [40,43–45]. NAC also improved neuronal survival
in the hippocampus after ischemic–reperfusion [46].

Pretreatment with NAC in mice receiving intracerebroventricular
(i.c.v.) injections of Aβ had improved learning and memory compared
to vehicle-treated animals [47]. NAC also increased GSH levels, pro-
tected against Aβ-induced protein and lipid peroxidation, and de-
creased acetylcholine levels and choline acetyltransferase (ChAT)
activity [47]. SAMP8 (Senescence Accelerated Mouse) mice overex-
press APP resulting in elevated levels of Aβ in the brain. SAMP8
mice administered NAC had improved cognition in the T-maze



Fig. 2. Synthesis of glutathione.
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footshock avoidance paradigm and the lever press appetitive task
[42]. Recently, AD-relevant APP/PS-1 mice were orally administered
NAC in drinking water for 5 months, before deposition of Aβ occurred
in the brain. The antioxidant administered before Aβ induced oxida-
tion occurred decreased protein and lipid oxidation, nitration of pro-
teins, and increased glutathione peroxidase and reductase activity
compared to age matched controls [48]. Such treatment clearly de-
creased oxidative stress in vivo in mice brain.

In AD brain and neuronal cultures exposed to Aβ, dying cells dis-
play characteristics of apoptosis [49]. A shift in redox status due to
NAC changes the signaling pathways involved in the apoptosis signal-
ing cascade [50,51]. NAC protection against Aβ involves several sig-
naling pathways involved in apoptosis including: activation of the
Ras/ERK pathway, stimulating p35/Cdk5 activity, and reduced phos-
phorylation/deactivation of MLK3-MKK7-JNK3 signaling cascade
[50–52]. NAC also acts as a transcription factor activating the RAS-
ERK pathway, rescuing neurons from apoptotic cell death [52]. There-
fore, in addition to antioxidant properties, and increasing GSH levels,
NAC protects against Aβ toxicity through activation of anti-apoptotic
signaling pathways.

NAC may play a role in amyloid precursor protein (APP) proces-
sing and Aβ formation. Aβ results from two proteases cleaving APP:
β-secretase and γ-secretase. NAC down-regulates APP gene transcrip-
tion, resulting in undetectable levels of APP mRNA in neuroblastoma
Fig. 3. Structure of N-acetyl-L-cysteine (NAC).
cells. This activity may be related to decreased binding activity of
transcription factor NF- κB, which is increased by oxidative stress
and Aβ [53]. Another group demonstrated that NAC significantly de-
creased soluble levels of Aβ(1–40) and Aβ(1–42) and modestly re-
duced insoluble Aβ(1–40) in TgCRND8 transgenic mice that
overexpress the APP gene [54]. Olivieri et al. showed NAC affected
APP processing and increased levels of Aβ(1–40) by itself, suggesting
the influence of β-secretase and γ-secretase cleavage of APP in neuro-
blastoma cells [55].

The role of Pin1 has been investigated in APP processing. Pin1 cata-
lyzes the structural formation of phosphorylated Ser/Thr–Pro for de-
phosphorylation of APP. In AD models and AD brain, this motif
remains phosphorylated resulting in increased Aβ production [56,57].
Our laboratory demonstrated oxidation and decreased levels of Pin1
in MCI and AD brain [9,58,59]. Utilizing proteomics, we identify elevat-
ed levels of Pin1 in preclinical AD (PCAD) brain [60], consistentwith the
notion that PCAD subjects, characterized by normal scores on tests of
cognition but having AD-like pathology in brain, respond to elevated
Aβ by increasing expression of Pin1. Our laboratory also demonstrated,
NAC treatment slightly elevated Pin1 in APP/PS1 mice over a 5 month
period, possibly decreasing Aβ induced oxidative stress [48]. Results
concerning NAC's effect on Aβ formation requires further study.

NAC capped quantum dots were utilized to block fibril formation
of Aβ by blocking the active site of fibrils, nuclear fibrils, or protofi-
brils, possibly through hydrogen bonding [61]. Free NAC was unable
to block Aβ fibril formation. Future antifibrilogenesis may involve
quantum dot technology.

Neprilysin is a principal degrading peptidase of Aβ. In AD affected
brain regions, neprilysin is oxidatively modified by HNE and has de-
creased levels and activity [62,63]. Preincubation with NAC was able
to prevent HNE and Aβ-induced HNE addition to neprilysin and
thus maintain neprilysin activity [64]. We suggest that NAC may be
protective through modulation of Aβ formation and degradation via
influence on APP transcription, processing, signaling pathways, and
preventing oxidative stress.

Alzheimer disease presents a prominent neuroinflammation com-
ponent. Astrocytes are the main supplier of GSH to microglia and neu-
rons. During chronic inflammation and oxidative stress, astrocytes
release toxic inflammatory mediators and free radicals, accelerating
activation of microglia and neurodegeneration [65]. Recently, de-
creased intracellular glutathione was correlated with the release of
pro-inflammatory factors TNF-α, IL-6, and nitrite ions and activation
of the inflammatory pathways, P38 MAP-kinase, Jun-N-terminal ki-
nase, NF-κB, in human microglia and astrocytes [66]. Extracellular
GSH attenuated the BSO-reduction of intracellular levels of GSH in
the above microglia and astrocytes, suggesting involvement of a
membrane channel or transporter. NAC directly inhibited inflamma-
tory factor NF-κB and blocked production of nitric oxide from induc-
ible nitric oxide synthase and inflammatory cytokines [67]. Increasing
glutathione levels with NAC in glial cells and astrocyes may confer
protection against the neuro-inflammation component of AD.

Given the multi-faceted way NAC is capable of modulating AD (see
Fig. 4), patient supplementation with NAC has been addressed. In a
previous study by Adair et al., late-stage AD patients supplemented
with NAC over a six month period not only tolerated the treatment
well, but also demonstrated significantly improved performance on
the Letter Fluency Task and the Wechsler Memory Scale Immediate
Number Recall [68], although, measures of oxidative stress in periph-
eral blood did not differ significantly [68]. More recently, AD patients
were given a vitamin/nutriceutical supplement that included folate,
vitamin B12, α-tocopherol, S-adenosyl methionine, NAC, and acetyl-
L-carnitine [69]. All cognitive endpoints were found to favor the
multi-supplement. Several antioxidant clinical trials had no effects
or marginal positive effects on MCI progression to AD or AD [70–72].
They did not include a multi-supplement approach or a glutathione en-
hancing drug. The failures in many antioxidant clinical trials likely arise

image of Fig.�2
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Fig. 4. A) Aβ produces ROS that eventually leads to the depletion of antioxidants and ox-
idative stress in Alzheimer disease. The increased oxidation induces apoptotic signaling
pathways and inflammation in astrocytes. Astrocytes release toxic inflammatory media-
tors and free radicals, accelerating activation of microglia and neurodegeneration, con-
necting the cycle of negative events perpetuating AD. B) NAC down-regulates APP gene
transcription, resulting in undetectable levels of APP mRNA. Thus, since less Aβ is
transcribed, fewer free radicals are produced by Aβ. NAC increases antioxidant levels
of glutathione and reacts with ROS preventing oxidative stress. The decreased oxidation in
the cells induces anti-apoptotic signaling pathways and prevents inflammation of the cell.
NAC directly inhibits inflammatory factor NF-κB and blocks production of nitric oxide
from inducible nitric oxide synthase and inflammatory cytokines.

Fig. 5. Structure of γ-glutymylcysteine ethyl ester (GCEE).

628 C.B. Pocernich, D.A. Butterfield / Biochimica et Biophysica Acta 1822 (2012) 625–630
from starting the therapies in the late stages of AD, not monitoring drug
levels andmarkers for the in vivo therapeutic effect of the drug, not uti-
lizing a multi-antioxidant approach that covers both lipophilic and hy-
drophilic areas of the cell or recycle the oxidized antioxidants back to
the reduced state, and not taking into account the basal redox status
of the subjects in the trials [10,73,74]. These limitations must be taken
into consideration when determining if an antioxidant therapy would
be beneficial in slow or preventing the progression of MCI and AD.

4. γ-Glutamylcysteine ethyl ester (GCEE)

Another effective means for increasing biosynthesis of GSH is GCEE
(Fig. 5) [75]. γ-Glutamylcysteine formation is the rate-limiting step for
the biosynthesis of GSH. Providing γ-glutamylcysteine bypasses the
feed-back inhibition by GSH on γ-glutamylcysteine synthetase (GCS),
the enzyme that catalyzes production of γ-glutamylcysteine. Attach-
ment of an ethyl ester moiety allows γ-glutamylcysteine to more easily
cross the cell membrane and blood–brain barrier (BBB). Protection
against myocardial ischemic–reperfusion and myocardial dysfunction
in Se-deficient ratswas afforded byGCEE [76,77]. GCEE is able to increase
brain andmitochondrial GSH levels and protect synaptosomes, neuronal
cells, and mitochondria against peroxynitrite damage [78,79]. Neuronal
cells were also protected against Aβ(1–42)-induced protein oxidation,
loss of mitochondrial function, and DNA fragmentaion by GCEE up-
regulation of GSH. GCEE did not, however, disrupt Aβ(1–42)fibril forma-
tion [80,81]. Aβ(1–42) is known to deplete GSH cellular levels which can
lead to neuronal death. However, 24 h after Aβ(1–42) addition, GSH and
GCS levels increase intracellularly, offering protection against Aβ(1–42)-
induced apoptosis in cortical neurons [82–84]. Recently, i.p. injections of
GCEE protected against kainic acid induced ROS and downregulated c-
fosmRNA in the cortex and hippocampus of rats [85]. GCEEmay react di-
rectly with ROS due to the cysteine residue and/or increase GSH, which
can protect against ROS and nucleophilic compounds.

5. Conclusions

Oxidative stress is a known characteristic of MCI and AD. Up regu-
lation of endogenous antioxidants is vital in combating oxidative
stress and thus helping to slow the advancement of MCI and Alzheimer
disease. Glutathione is themost abundant and versatile endogenous an-
tioxidantwithmany enzyme systems to enhance its function. NAC (FDA
approved) and GCEE are known to increase glutathione in the brain and
periphery and protect against ROS-producing substances in vivo. More
research needs to be invested in GCEE, since it has no known harmful
effects and by-passes the feedback inhibition cycle of glutathione. In-
creasing glutathione remains a promising therapeutic strategy to slow
or prevent MCI and Alzheimer disease.
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